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Abstract

Cerrado is the second largest biome in South America and accounted for the second largest

contribution to carbon emissions in Brazil for the last 10 years, mainly due to land-use

changes. It comprises approximately 2 million km2 and is divided into 22 ecoregions, based

on environmental conditions and vegetation. The most dominant vegetation type is cerrado

sensu stricto (cerrado ss), a savanna woodland. Quantifying variation of biomass density of

this vegetation is crucial for climate change mitigation policies. Integrating remote sensing

data with adequate allometric equations and field-based data sets can provide large-scale

estimates of biomass. We developed individual-tree aboveground biomass (AGB) allometric

models to compare different regression techniques and explanatory variables. We applied

the model with the strongest fit to a comprehensive ground-based data set (77 sites, 893

plots, and 95,484 trees) to describe AGB density variation of cerrado ss. We also investi-

gated the influence of physiographic and climatological variables on AGB density; this anal-

ysis was restricted to 68 sites because eight sites could not be classified into a specific

PLOS ONE | https://doi.org/10.1371/journal.pone.0196742 August 1, 2018 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Roitman I, Bustamante MMC, Haidar RF,

Shimbo JZ, Abdala GC, Eiten G, et al. (2018)

Optimizing biomass estimates of savanna

woodland at different spatial scales in the Brazilian

Cerrado: Re-evaluating allometric equations and

environmental influences. PLoS ONE 13(8):

e0196742. https://doi.org/10.1371/journal.

pone.0196742

Editor: RunGuo Zang, Chinese Academy of

Forestry, CHINA

Received: December 22, 2017

Accepted: April 18, 2018

Published: August 1, 2018

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: We thank the Conselho Nacional de

Desenvolvimento Cientı́fico e Tecnológico (CNPq)

for granting Research Productivity fellowships to

Mercedes M. C. Bustamante and José Roberto R.
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ecoregion, and one site had no soil texture data. In addition, we developed two models to

estimate plot AGB density based on plot basal area. Our data show that for individual-tree

AGB models a) log-log linear models provided better estimates than nonlinear power mod-

els; b) including species as a random effect improved model fit; c) diameter at 30 cm above

ground was a reliable predictor for individual-tree AGB, and although height significantly

improved model fit, species wood density did not. Mean tree AGB density in cerrado ss was

22.9 tons ha-1 (95% confidence interval = ± 2.2) and varied widely between ecoregions (8.8

to 42.2 tons ha-1), within ecoregions (e.g. 4.8 to 39.5 tons ha-1), and even within sites (24.3

to 69.9 tons ha-1). Biomass density tended to be higher in sites close to the Amazon. Ecore-

gion explained 42% of biomass variation between the 68 sites (P < 0.01) and shows strong

potential as a parameter for classifying regional biomass variation in the Cerrado.

Introduction

Cerrado, a wet seasonal savanna, is the second largest biome in South America. Between 2002

and 2010, the Cerrado accounted for the second largest contribution to net carbon emissions

(1,845 Tg) in Brazil in the Land Use and Land-Use Change and Forest (LULUCF) sector [1].

Vegetation carbon stocks are much lower in the savanna than in Amazon forests (29 vs. 120

Mg C ha-1) [2]. However, land-use changes in the Cerrado are occurring much faster. In 2010,

approximately 50% of its original habitat had been converted, mainly due to agricultural and

livestock activities [3]. Mapping terrestrial carbon stocks is essential for climate change mitiga-

tion policies [4], and optimizing biomass and carbon estimates across a range of spatial scales

is important to provide confidence in carbon markets and REDD+ projects [5]. Uncertainty in

vegetation carbon stocks is high [6–8], especially in the Cerrado biome [7]; therefore, improv-

ing estimates of carbon stocks in the Cerrado is crucial to determine the impacts of land-use

changes, understand their role in the global carbon balance, and support climate change miti-

gation policies.

The Cerrado covers approximately 2 million km2 and is divided into 22 ecoregions accord-

ing to climate, geomorphology, soil, and vegetation [9]. As the Brazilian agricultural frontier

moves toward the northwest of the Cerrado [10,11], regional estimates of biomass are needed

to quantify the impact of regional patterns of deforestation on carbon balance. However, esti-

mating biomass and carbon density of vegetation in the Cerrado is challenging because of its

large latitudinal gradient and high environmental and structural variability. Besides variation

across the many vegetation types [12,13], considerable variation exists within the same vegeta-

tion class [14].

The most dominant type of vegetation in the Cerrado is cerrado sensu stricto (cerrado ss),

which consists of a continuous herbaceous grassy layer and a woody layer with 10%–60% can-

opy cover, where most trees are 3–5 m tall [15]. Its structure varies from sparse to dense wood-

land. Detecting fine-scale biomass variation of cerrado ss is a challenge for remote sensing

carbon mapping. However, quantifying biomass density and disentangling the environmental

aspects related to this variation should improve large-scale carbon stock estimates in the Cer-

rado. Integrating remote sensing data with adequate allometric equations and field-based data

sets can provide large-scale estimates of biomass.

There are few allometric equations for cerrado ss vegetation. Error distributions for some

of these equations have not been reported; therefore it is not possible to evaluate bias or deter-

mine whether regression analysis assumptions of homoscedasticity and normality of errors
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have been met [16,17]. Other equations result in negative biomass for small trees (diameter at

30 cm above ground� 5 cm, and height� 0.67 m) [18] or cover areas outside the Cerrado

core region (e.g. Minas Gerais state) or transitional areas (e.g. Atlantic Forest) [19,20]. The

most recent review on regional biomass variation in the Cerrado by Miranda et al. [21] made

no progress toward the development of allometric equations. Furthermore, most sites were in

the southern part of the biome [21].

In the present study, we developed and compared 12 allometric models to identify the

regression techniques that provide the strongest fit and the most important explanatory vari-

ables to estimate individual-tree AGB for cerrado ss. We focused on the following questions: a)

Do log-log linear models provide better estimates than power models? b) In multispecies mod-

els, does including a species random effect improve model fit? c) Is diameter a good predictor

of individual-tree AGB? d) Does including height and species wood density improve model fit?

We used the individual-tree AGB model with the strongest fit to estimate AGB density of

cerrado ss in 77 sites and assess regional variation within the Cerrado biome. We also investi-

gated the influence of the following physiographic and climatological variables on AGB varia-

tion: ecoregion, soil texture, and climatic factors (climatological water deficit and

environmental stress). This analysis was restricted to 68 sites because eight sites could not be

classified into a specific ecoregion, and one site had no soil texture data.

Improving large-scale carbon estimates in the Cerrado requires a large number of ground-

based data sets. Individual-tree data are scarce and difficult to obtain, but plot data are more

common in the literature. Therefore, we used a comprehensive individual-tree data set of 893

plots (95,484 trees) in 77 sites to develop two models to estimate plot AGB density based on

plot basal area.

Nonlinear regression x log-log transformed data

Many allometric relationships in nature can be described by power functions (or power law).

The classic example is Kleiber’s law, in which basal metabolic rate is expressed as a function of

body mass (y = ax3/4) [22]. West et al. [23] developed a quantitative model to explain the origin

and universality of the power law based on three assumptions: the nutrient transport network

follows a fractal pattern, the smallest branch is size-invariant, and the energy required to dis-

tribute resources is minimized. West et al. later proposed a general allometry model for vascu-

lar plants in which biomass scales with diameter (y = ax8/3) [24]. Muller-Landau et al. [25]

criticized the generalization of the metabolic scaling theory and suggested that scaling also

depends on asymmetric competition and availability of resources, such as light. A single con-

stant coefficient for the scaling rule has been refuted [25], but the structure of power-law mod-

els is widely used to develop biomass allometric models [26]:

y ¼ axb þ ε; ε � Nð0; s2Þ

where y = response variable, x = explanatory variable, a and b are model parameters, and ε =

error, which is assumed to be normally distributed with zero mean.

In most statistical packages, the default nonlinear regression (NLR) technique (least-squares

fit) assumes homogeneity of errors [27]. However, because this assumption is often violated

for allometry data [4], the use of NLR power models may result in substantial bias [27,28].

Power models can be directly converted to linear form by log-transformation of response and

explanatory variables (log-log transformation):

lnðyÞ ¼ lnðaÞ þ b � lnðxÞ þ ε; ε � Nð0; s2Þ:
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It is convenient to define α = b, β = ln(a), and rewrite the equation above as

lnðyÞ ¼ a � lnðxÞ þ bþ ε; ε � Nð0; s2Þ

where α and β are model parameters.

Log-log transformation may result in homoscedastic errors [27,28], motivating the wide-

spread use of log-log transformation followed by linear regression (LR) in biomass allometric

models. A theoretical reason for using log-log transformation is that allometry (how the size of

one body part changes with respect to another) measures proportional relationships, not abso-

lute relationships. Thus, log-log transformation allows proportional relationships to be readily

quantified, unlike the original arithmetic data [29]. Many allometric relationships are multipli-

cative by nature, and log-log-transformation is useful because accounting for proportional var-

iation is most important [30]. Some argue that log-log LR models can be biased and

misleading [31–34], but others advocate their use as a better approach [27, 35–38].

Xiao et al. developed a simple method to compare NLR and log-log LR based on the error

distribution [35]. NLR assumes that the error is normally distributed and additive on the arith-

metic scale [29], whereas LR assumes that the error is normally distributed and additive on the

logarithmic scale [30], which corresponds to lognormally distributed and multiplicative on the

arithmetic scale [35]. We used this method to compare NLR and log-log LR methods in fitting

AGB models to our cerrado ss data.

Materials and methods

The study was divided in a series of steps: a) evaluating regression techniques and variables to

identify the individual-tree AGB model with the strongest fit; b) using the selected model to

estimate and determine biomass variation of cerrado ss in the Cerrado; and c) determining the

influence of explanatory variables on this variation (Fig 1). We also developed models to esti-

mate plot AGB density based on plot basal area data.

Tree aboveground biomass allometric models

Destructive sampling. We used destructive sampling data collected by Prof. George

Eiten’s team between 1982 and 1990. George Eiten (1923–2012) was Professor of the Botany

Department of the University of Brası́lia, from 1971 to 1993. A model published in Abdala

et al. [16] was based on 112 trees of this same data set. Trees were collected from a cerrado ss,

located along the outer edge (3.5×150 m) of the Brası́lia Botanical Garden (BBG) (15˚54’53’’S,

47˚49’33’’W; altitude, approximately 1165 m). Although trees were harvested outside BBG, the

vegetation was well preserved and retained the structural characteristics of this vegetation

type. The terrain is flat, and the soil is red Oxisol with medium to sandy texture.

The sampling efforts comprised species common to cerrado ss vegetation [39]. Two field

campaigns were carried out per year at the beginning and end of the rainy season (total of 16

field campaigns) to avoid dry season deciduousness of most sampled species. Trees were

selected based on the following criteria: species, size variation within species, and tree integrity.

Before harvest, tree diameter at 30 cm above ground (d) and total height (h) were measured.

Large tarpaulins were placed on the ground to collect sawdust and splinters from cutting or

sawing. Trees were harvested from top to bottom, in the following order: new leaves and cur-

rent-year branches, old leaves, thin branches (� 2 cm diameter), thick branches (> 2 cm diam-

eter), and trunk.

The harvested material was separated into compartments (trunk slices, thick branches, thin

branches, and leaves) and then carefully placed into thick plastic bags that were previously

marked and weighed. The samples were transported to the lab, where fresh weight was
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immediately recorded. After oven-drying the samples (65˚C for leaves, and 100˚C for other

compartments) to constant weight, dry weight was recorded.

The final destructive sampling set (S1 Table) consisted of 114 trees from eight species very

common in cerrado ss [39]: Byrsonima coccolobifolia Kunth, (n = 20) Byrsonima verbascifolia
(L.) DC. (n = 15), Connarus suberosus var. fulvus (Planch.) Forero (n = 16), Dalbergia miscolo-
bium Benth. (n = 15), Palicourea rigida Kunth (n = 20), Piptocarpha rotundifolia (Less.) Baker

(n = 10), Pterodon pubescens (Benth.) Benth. (n = 4), and Qualea grandiflora Mart. (n = 14).

Despite high beta-diversity in the Cerrado biome, a few dominant species (oligarchic species)

often account for most of the total denisity in many physiognomies [39–41].

Tree diameter ranged from 2.75 to 15.5 cm, and the distribution followed a reverse-J pat-

tern, which is common to well-preserved cerrado ss. Most trees (74%) had height between 1

and 3 m (Fig 2). Species wood density values were obtained from the literature [42] and ranged

from 0.42 g cm-3 (P. rotundifolia) to 0.73 g cm-3 (P. pubescens) (S1 Table).

Individual-tree aboveground biomass model construction. We developed 12 individ-

ual-tree AGB allometric models (Table 1) in order to a) compare NLR and LR techniques to fit

the simple power-law model; b) investigate whether including species as a random effect

improves the model fit; and c) evaluate the following explanatory variables: diameter (d), basal

area (ba), trunk cylindrical volume (v), and species wood density (ρ) (Table 1).

Fig 1. Methodological steps for developing an individual-tree aboveground biomass (AGB) model for cerrado sensu
stricto in the cerrado, determining regional variation of tree AGB density, and evaluating environmental factors as

explanatory variables. d = diameter, ba = basal area, v = volume, h = height, ρ = species wood density; WD = climatological

water deficit; and E = environmental stress.

https://doi.org/10.1371/journal.pone.0196742.g001
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To identify the regression technique that provides the strongest fit, we compared the LR

models (models 1 and 2) against their corresponding NLR models (models 3 and 4, respec-

tively). To determine whether including species as a random effect improves model fit, we

used generalized linear models (GLMs) with Gaussian distribution (models 5, 6, 7, 8), which

are equivalent to the log-log linear models, to enable direct comparison with generalized linear

mixed-effect models (GLMMs; models 9, 10, 11, 12, respectively). To evaluate explanatory var-

iables, we compared models with the same regression methods.

All simulations and analyses to compare LR and NLR models were run in R version 2.15.3

[43], with packages “nlrwr” [44] and “boot” [45,46]. All remaining procedures for model

Table 1. Allometric models to estimate individual-tree aboveground biomass of cerrado sensu stricto, based on

different explanatory variables (diameter, basal area, volume, and wood density) and species as random effect.

Model Type X Model structure

1 LR d ln (yi) = α � ln(xi) + β + εi, εi ~ N(0, σ2)

2 v
3 NLR d yi = α(xi)β + εi, εi ~ N(0, σ2)

4 v
5 GLM d ln (yi) = α � ln(xi) + β + εi, εi ~ N(0, σ2)

6 ba
7 v
8 vρ
9 GLMM d ln (yij) = α � ln(xij) + β + uj + εij, εij ~ N(0, σ2)

10 ba
11 v
12 vρ

LR = linear regression, NLR = nonlinear regression, GLM = generalized linear model, GLMM = generalized linear

mixed-effect model, d = diameter (cm), ba = basal area (cm2), v = volume (dm3), vρ = volume (dm3) � species wood

density (g dm-3), yi = aboveground biomass (g) of tree i, xi = explanatory variable of tree i, εi = error associated with

tree i, yij = aboveground biomass (g|) of tree i from species j, xij = explanatory variable of tree i from species j, uj =

random-effect parameter generated by species effect, and εij = error associated with tree i from species j.

https://doi.org/10.1371/journal.pone.0196742.t001

Fig 2. Diameter and height distributions of trees sampled outside Brası́lia Botanical Garden in Brazil used to develop

allometric biomass equations.

https://doi.org/10.1371/journal.pone.0196742.g002
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simulation and analysis were performed in R version 3.2.4 revised [47], packages MuMIn [48]

and lme4 [49]. For GLMs and GLMMs, we used maximum likelihood fit and Gaussian error

family.

Back-transformation of log-log LR models to the power-law form requires a correction fac-

tor that accounts for skewness of the distribution of y, based on the residual standard error (σ)

[50–52].

Linear form: ln (y) = α ln (x) + β
Power-law form: y = eβxα

CF ¼ e
s=2ð Þ

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
½lnðyiÞ � lnðŷ iÞ�

2

N � k

s

where CF = correction factor, σ = residual standard error, N = total number of sampled trees,

yi = ith observed biomass, ŷ i ¼ ith estimated biomass, and k = number of parameters.

Individual-tree aboveground biomass model analysis. We compared LR and NLR mod-

els with the method proposed by Xiao et al. [36–38]. The NLR technique is suitable for data

with additive, homoscedastic, normal error, whereas log-log LR performs better for data with

multiplicative, heteroscedastic, lognormal error (see [34] for a detailed description of the

method).

All models were analyzed in terms of error distribution (homoscedasticity and normality),

uncertainty of model parameters α and β (standard error, percent relative standard error, and

confidence intervals) [8], residual standard error, coefficient of variation (CV) [4], P-value,

and Akaike information criterion (AIC). The analysis also included the coefficient of determi-

nation (R2) for simple LR models, McFadden’s pseudo R2 for GLMs, and marginal and condi-

tional R2 for GLMMs [40]. Marginal R2 (R2m) represents the variance explained by fixed

factors, and conditional R2 (R2c) represents the variance explained by both fixed and random-

effect factors.

CV ¼ 100 � s=�y
� �

where CV = coefficient of variation, σ = residual standard error, and y�= mean of the response

variable y.

The model with the strongest fit was back-transformed, and we assessed its performance

with an independent validation set (S2 Table), used by Delitti et al. [17].

Plot biomass density models

Construction of plot biomass density models. We developed two mixed-effect models

(with site as random effect) to estimate plot AGB density from plot basal area. We used a com-

prehensive ground-based data set (diameter and height), consisting of 893 plots within 77 cer-

rado ss sites. This data set covers a wide latitudinal and longitudinal range (6˚4’17.22’’S to 19˚

10’53.184’’S; 42˚29’30.84’’W to 56˚13’30’’W). The plots were 20 × 50 m (0.1 ha), except for

those in site 77, which were 20 × 20 m. All inventories included trees with base diameter� 5

cm (at 30 cm above ground). Additional details on the data set are presented in S3 Table.

First, we estimated plot basal area (explanatory variable) for 893 plots. Then we estimated

individual-tree AGB with models 10 and 11 to calculate plot AGB density (response variable)

(S4 Table) and to develop models 14 and 13, respectively, using maximum likelihood fit with
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Gaussian distribution:

lnðypsÞ ¼ a � lnðxpsÞ þ bþ us þ εps; εps � Nð0; s2Þ

where yps = aboveground biomass density (ton ha-1) of plot p from site s, xps = plot basal area

(m2 ha-1) of plot p from site s, us = random-effect parameter generated by site effect, and εps =

error associated with plot p from site s.
Analysis of plot biomass density models. Models were evaluated in terms of marginal

and conditional R2 [53], P-value, CV, and AIC. Assumptions of normality and homoscedastic-

ity of errors were checked. All simulations and analyses were performed in R (R Core Team

2017) with packages MuMin [48] and lme4 [49].

Variation in tree aboveground biomass density of cerrado sensu stricto
We used the selected model to estimate tree AGB density in 77 of the cerrado sites. For each of

the sites, we calculated AGB density confidence intervals based on variability between plots.

Significant differences in biomass density between sites were determined with the Kruskal-

Wallis test (P< 0.05). We also applied hierarchical clustering (using Euclidean distance matrix

computation) to separate groups based on biomass densities with package Mass [54] in R [47].

Factors influencing plot aboveground biomass density variation of cerrado

sensu stricto
We used LR and GLMMs to determine the effect of the following variables on tree AGB varia-

tion: maximum climatological water deficit (CWD), environmental stress (E) [4], soil (sand

and clay content) [55], and ecoregion [9].

CWD is the sum of the difference between monthly rainfall (Pi) and monthly evapotranspi-

ration (ETi) when this difference is negative (water deficit): CWD ¼
P12

i¼1
Minð0; Pi � ETiÞ

[4]. Environmental stress is based on CWD, seasonal temperature (TS), and seasonal precipita-

tion: E = (0.178 � TS − 0.938 � CWD − 6.61 � PS) � 10−3. Chave et al. provided CWD and E on a

global gridded layer at 2.5-arcsec resolution [4] (available at http://chave.ups-tlse.fr/

pantropical_allometry.htm). Sand content (50–2000 μm mass fraction (%) at 0–30 cm depth)

and clay content (0–2 μm mass fraction (%) at 0–30 cm depth) was obtained from a 250-m soil

grid (SoilGrids) [55].

We used the classification of Cerrado ecoregions (1:250.000) [9] derived from the Land Sys-

tem Classification [56] and followed the criteria of Bailey [57] and Dinerstein [58] based on six

controlling factors, in order of importance: geomorphology, geology, soil, precipitation, vege-

tation classification, and presence/absence of key plant taxa. They used three families (Brome-

liaceae, Loranthaceae and Viscaceae) and eight genera: Cyrtopodium (Orchidaceae), Habenaria
(Orchidaceae), Jacaranda (Bignoniaceae), Miconia (Melastomataceae), Mimosa (Legumino-

sae), Tabebuia (Bignoniaceae), Solanum (Solanaceae), and Vernonia (Asteraceae). They first

classified the Cerrado into 43 geomorphological units, which was reduced to 29 units by

including geology, soil, and precipitation, and finally to 22 ecoregions by including vegetation

class and key taxa. We restricted this analysis to 68 sites in 13 ecoregions because eight sites

could not be classified into a specific ecoregion, and one site had no soil texture data.

Results

Tree aboveground biomass allometric models

Log-log linear models provided better estimates than power models. The NLR models

(models 3 and 4) had heteroscedastic and non-normal errors, whereas the LR models (models
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1 and 2) had homoscedastic and normal errors (Figures A–D in S1 File). The Δm AICC

between LR and NLR models was much greater than |2|, supporting the assumption of multi-

plicative lognormal error in models based on d and v (Table 2) and demonstrating that log-log

LR models were more appropriate for our data set.

Including species as random effect improved model fit. All GLMs and GLMMs had

homoscedastic and normal errors (Figures E–L in S1 File). With the same explanatory vari-

ables, all GLMMs showed better performance than their corresponding GLMs, with the differ-

ence in AIC > |2| (Table 3).

Diameter and basal area were good predictors of individual-tree aboveground biomass,

and including height improved model fit. All log-log linear models (LRs, GLMs, and

GLMMs) based on diameter or basal area (models 1, 5, 6, 9, and 10) had low CVs (6.2%), dem-

onstrating that diameter or basal area alone were good predictors of individual-tree AGB. For

all model types, models based on v performed better than the corresponding models based on

d or ba (Tables 2 and 3). Therefore, including h (as cylindrical volume) significantly improved

model fit.

Including wood density did not improve model fit. Including wood density did not

improve the fit for GLMs or GLMMs. Models 8 and 9 had the same R2m, R2c, and CV, and the

absolute difference between AICs was> 2. Similarly, models 11 and 12 had the same R2m,

R2c, and CV, and AICs did not differ significantly (Table 3). Considering the principle of par-

simony, we suggest using model 11 to estimate tree AGB for cerrado ss. Model 11 was back-

transformed (y = (409.047 � v0.976) � 1.17) and validated with an independent data set. The

results demonstrated good performance, with a lower CV for the validation data set than for

the training data set (Table 4).

Tree aboveground plot biomass allometric models

Models 13 and 14 both had homoscedastic and normal errors (Figures M and N in S1 File),

high R2m, and low CV (Table 5). Model 14 had higher R2m, lower CV, and lower AIC

(Table 5).

Biomass variation in 77 cerrado sensu stricto sites

Mean AGB of the 77 sites was 22.9 tons ha-1 (95% confidence interval = ± 2.2), with normal

distribution (Shapiro–Wilk test: W = 0.97, P> 0.09) (Figure T in S1 File). AGB varied from

4.8 to 50.2 tons ha-1 with high CV (42.9%). Variation between sites was significant (P< 0.05)

(S5 Table). Across ecoregions, mean AGB ranged from 8.8 tons ha-1 (São Francisco das Vel-

has) to 42.2 tons ha-1 (Alto Parnaı́ba), with high variation within ecoregions (e.g. 4.8 to 39.5

tons ha-1 in Planalto Central) (Fig 3). In many cases, within-site variation was also high, with

large confidence intervals (e.g. 24.3 to 69.9 tons ha-1 in site 76) (Fig 4, Figure T in S1 File, S3

Table). Hierarchical clustering divided the sites into two categories: biomass density� 24.1

tons ha-1 (sites 1–46); and biomass density� 24.1 tons ha-1 (sites 47–77), except for site 48

(24.2 ton ha-1) that fell into the first category (Figure V in S1 File).

Although the spatial distribution of AGB density varied widely, even between nearby sites,

there is a regional pattern in which biomass density tended to be higher in eastern sites, closer

to the Amazon (Fig 5).

Environmental variables

When examined individually with simple LR, ecoregion explained 42% of AGB variation

between 68 sites (P < 0.05); sand and clay explained 11.5% and 7.4% of the variation,
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respectively (P < 0.05) (Table 6). All models had normal and homoscedastic errors (Figures

O–S in S1 File).

When considering ecoregion as random effect, clay + sand × CWD explained 15% of AGB

variation (R2m = 0.15, P = 0.014, CV = 30.2%). Although significant effects were observed for

clay (P = 0.020) and sand x CWD (P = 0.004), the variation was explained primarily by random

(ecoregion) and fixed-effect factors combined (R2c = 0.53).

Table 2. Comparison of log-log linear and non-linear models for individual-tree aboveground biomass of cerrado sensu stricto in Brazil.

Model 3 1 4 2

Model structure y = a � db ln (y) = α � ln (d) + β y = a × vb ln (y) = α � ln (v) + β

a (95% CIL) 82.41 (37.32, 167.32) 469.95 (288.89, 717.67)

PRSE (%) 43.8 24.08

b (95% CIL) 2.10 (1.82, 2.41) 0.97 (0.86,1.09)

PRSE (%) 8.29 6.42

α (95% CIL) 2.88 (2.67, 3.09) 0.99 (0.94, 1.05)

PRSE (%) 3.72 2.78

β (95% CIL) 2.44 (2.05, 2.84) 5.96 (5.84, 6.07)

PRSE (%) 8.18 0.98

CF 1.267 1.199

R2
Adj 0.87 0.92

AIC 2265.119 156.739 2202.059 96.189

P-value < 2.2e-16 < 2.2e-16

CV (%) 96.6 6.2 73.45 4.7

mAICc 2265.338 1909.912 2202.28 1849.36

Δ AICC 355.4267 352.9197

a, b, α, and β are model parameters, d = diameter (cm), v = volume (dm3), y = individual-tree aboveground biomass (g), PRSE = percent relative standard error of model

parameters, R2
Adj = adjusted coefficient of determination, AIC = Akaike information criterion, CIL = confidence interval limits, CV = coefficient of variation, mAICc =

second order variant of AIC.

https://doi.org/10.1371/journal.pone.0196742.t002

Table 3. Comparison of generalized linear models (GLMs) and generalized linear mixed-effect models (GLMMs) to estimate individual-tree aboveground biomass,

based on different explanatory variables (x): diameter (d), basal area (ba), volume (v), and volume � wood density (vρ).

GLM α β R2pseudo AIC CV (%) CF

Model x coef. (95% CIL) SE PRSE (%) coef. (95% CIL) SE PRSE (%)

5 d 2.884 (2.68, 3.09) 0.107 3.7 2.444 (2.05, 2.84) 0.200 2.4 0.87 156.74 6.2 1.27

6 ba 1.442 (1.34, 1.55) 0.054 3.7 2.792 (2.43, 3.16) 0.187 2.8 0.87 156.74 6.2 1.27

7 v 0.997 (0.94, 1.05) 0.028 2.8 5.957 (5.84, 6.07) 0.059 6.8 0.92 96.19 4.7 1.20

8 vρ 0.951 (0.90, 1.00) 0.026 2.8 0.073 (-0.34, 0.49) 0.213 0.1 0.92 95.92 4.7 1.20

GLMM α β R2m R2c AIC CV (%) CF

Model x coef. (95% CIL) SE PRSE (%) coef. (95% CIL) SE PRSE (%)

9 d 2.776 (2.58, 2.97) 0.026 1.0 2.685 (2.27, 3.11) 0.208 2.7 0.85 0.89 141.00 6.2 1.22

10 ba 1.388 (1.29, 1.49) 0.050 3.6 3.020 (2.63, 3.43) 0.198 3.0 0.85 0.89 141.00 6.2 1.22

11 v 0.975 (0.92, 1.03) 0.026 2.7 6.014 (5.84, 6.20) 0.084 6.0 0.92 0.94 81.80 4.7 1.17

12 vρ 0.963 (0.91, 1.02) 0.036 2.7 -0.020 (-0.46, 0.41) 0.220 -0.02 0.92 0.94 80.90 4.7 1.17

For all models, P < 0.001, x = explanatory variable, α and β are model parameters, coef. = coefficient, CIL = confidence interval limits, SE = standard error of the

parameter, PRSE = percent relative standard error of the parameter, R2pseudo = pseudo coefficient of determination, R2m = marginal coefficient of determination,

R2c = conditional coefficient of determination, AIC = Akaike information criterion, CV = coefficient of variation, and CF = correction factor.

https://doi.org/10.1371/journal.pone.0196742.t003
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Discussion

Tree aboveground allometric models

Log-log linear models provided better estimates of tree aboveground biomass. Our

data corroborate previous studies [27,35,38,60] that support the use of log-log LR over NLR to

estimate tree AGB. In the theoretical model (y = axb) of West et al. [24], the exponent b = 2.67.

Our nonlinear diameter-based model (model 3) had a much lower exponent (2.10), but when

back-transformed to power-law form, exponents of diameter-based log-log LR models were

closer to that predicted by West et al. [24]: b = 2.88 (models 1 and 5), and b = 2.78 (model 9).

Including species as random effect improved model fit. Our study showed that includ-

ing species as random effect improved model fit, which is consistent with the study of Njana

et al. [61] showing that individual-tree AGB multi-species models can be improved when a

species random effect is added. In forest science, mixed-effect models that consider plot as ran-

dom effect include diameter growth models [62,63], height-diameter models [64–66], crown

width models [67], and biomass allometric models [68,69]. Other biomass model studies have

considered different variables as random effect, such as author (categorical variable encom-

passing differences such as methodology) [70]; tree origin (planted or natural forest) and geo-

graphic region [71]; plant family, wood density (categorical variable) and ecoregion [72]; and

tree species [61].

Table 4. Performance of model 11, back-transformed to its power-law form (y = (409.047 � v0.976) � 1.17), using

the training data set (present study) and an independent validation set from Delitti et al. [17].

Data set N SE (g) CV (%)

Training data set 114 3,728 73.6

Validation data set 60 6,668 43.2

SE = standard error, CV = coefficient of variation, y = tree aboveground biomass (g), and v = tree volume (dm3).

https://doi.org/10.1371/journal.pone.0196742.t004

Table 5. Evaluation of models 13 and 14 to estimate tree aboveground plot biomass density of cerrado sensu
stricto.

Model 13 Model 14

α (95% CIL) 1.197 (1.168, 1.227) 1.22043 (1.179, 1.25)

PRSE (%) 1.25 1.10

β (95% CIL) 0.245 (0.166, 0.323) 0.119 (0.050, 0.188)

PRSE (%) 16.30 29.22

R2m 0.88 0.91

R2c 0.95 0.96

P < 2.2e-16 < 2.2e-16

CV (%) 5.34 4.92

AIC -498.7 -680.4

CF 1.08 1.07

Power-law form yplot = (1.277 � xplot1.197) � 1.08 yplot = (1.173 � xplot1.220) � 1.07

α and β are model parameters, PRSE = percent relative standard error of the parameters, CIL = confidence interval

limits, R2m = marginal determination coefficient, R2c = conditional determination coefficient, AIC = Akaike

information criterion, CV = coefficient of variation, CF = correction factor, yplot = aboveground plot biomass (ton

ha -1), and xplot = plot basal area (m2 ha-1).

https://doi.org/10.1371/journal.pone.0196742.t005
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Fig 3. Tree aboveground biomass density of cerrado sensu stricto in 13 cerrado ecoregions, estimated with model 11.

https://doi.org/10.1371/journal.pone.0196742.g003

Fig 4. Tree aboveground biomass density and confidence interval of 77 cerrado sensu stricto sites, estimated with model 11.

https://doi.org/10.1371/journal.pone.0196742.g004
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Fig 5. Distribution of tree aboveground biomass density of cerrado sensu stricto vegetation in cerrado (estimated with model 11),

using individual-tree data from 77 sites. Numbers indicate ecoregions: 1 = Alto Paranaı́ba, 2 = Araguaia Tocantins, 3 = Bananal,

4 = Bico do Papagaio, 5 = Chapadão do São Francisco, 6 = Depressão Cuiabana, 7 = Depressão do Parnaguá, 8 = Paracatu, 9 = Paraná

Guimarães, 10 = Parecis, 11 = Planalto Central, 12 = São Francisco Velhas, 13 = Vão do Paranã. Delimitation of Cerrado biome and

ecoregions was obtained from IBGE [59] and Arruda et al. [9], respectively.

https://doi.org/10.1371/journal.pone.0196742.g005

Table 6. Effect of environmental factors on tree aboveground biomass density of 68 cerrado sensu stricto sites in Brazil, using LR models.

Model Explanatory variables R2:

Adj P-value CV (%) AIC

15 CWD 0.028 0.093 43.79 506.47

16 E -0.01 0.533 43.79 509.01

17 Sand 0.115 0.002 41.78 500.09

18 Clay 0.074 0.014 42.72 503.12

19 Ecoregion 0.424 1.2E-05 33.71 480.51

CWD = climatological water deficit, E = environmental stress, R2
Adj = adjusted determination coefficient, CV = coefficient of variation, and AIC = Akaike information

criterion.

https://doi.org/10.1371/journal.pone.0196742.t006
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Biomass allometric model development often results in hierarchical data grouped by plot or

site and species. Same-species and same-site observations are likely to be more correlated and

hence lack independence. It is important that the structure of the data is taken into account.

Therefore, for this type of data, mixed-effect models should be used instead of fixed-effect

models [61].

Cerrado has the highest biodiversity of any savanna in the world. Cerrado latu sensu, which

ranges from grasslands to closed woodlands, contains 951 woody species [73], and tree biodi-

versity in cerrado ss is also high (50–80 species ha-1) [74]. However, the vegetation often con-

sists of a few oligarchic species and a large number of rare species [73]. Thus, multi-species

models are more appropriate to estimate biomass in this biome. Although it may be unrealistic

to use species-specific models for species-rich forests, including the species random effect may

account for variability across multiple species. Furthermore, the species random effect may

also serve as proxy for species wood density (as a categorical variable).

Explanatory variables for individual-tree aboveground biomass. Our data showed that,

in the absence of other variables, diameter (measured at 30 cm above ground) or basal area

alone are good predictors of individual-tree AGB in cerrado ss. Diameter is the most signifi-

cant explanatory variable in AGB models and is used as the sole variable in many models [26].

In dense tropical forests, height can be difficult to measure; however, in open woodlands, such

as cerrado ss, measuring height is easier. The importance of including height in biomass allo-

metric models has been widely discussed [52,61,75,76]. Wood density has also been considered

a fundamental variable for predicting AGB [60,76,77,78]. In our study, including height by

using v as an explanatory variable significantly improved predictions, whereas including wood

density did not. In studies evaluating explanatory variables for predicting AGB in African

miombo woodlands (similar to cerrado ss), some researchers observed little prediction

improvement when adding height to diameter-based models [79,80], whereas others, as in the

present study, found that height but not wood density significantly improved predictions [81].

Generalized models and regional models. Destructive sampling (measuring, harvesting,

and weighing trees) is an onerous task that imposes a challenge for developing local and

regional models and for large sample sizes. However, in the absence of locally developed mod-

els, generic models may be used. One example is the generic pantropical model developed by

Chave et al. [4], which is based on a global database of 58 sites across a wide range of vegetation

types, comprising a set of 4004 harvested trees. Generic models can provide valuable informa-

tion but may introduce bias for estimates in ecosystems not represented in the dataset used to

develop the models [72]. We used our destructive sampling data to compare the two models

with the strongest fit (models 11 and 12), in their power-law forms, with the pantropical

model from Chave et al. [4] and five regional models: three from cerrado ss sites [16,18,20],

one from a campo cerrado site (open woodland) [17], and one from cerrado ss and campo cer-

rado sites [19] (Table 7).

The generic pantropical model data set [4] did not include cerrado ss vegetation and used

diameter at breast height (dbh) as an explanatory variable, instead diameter at 30 cm above

ground, as recommended for savanna woodlands. Nonetheless, the predictive performance of

the pantropical model was similar that of model 11 and outperformed model 12 and the other

regional models (Table 7). This result supports the idea that, in the absence of reliable local

models, generic models can be useful.

Tree aboveground plot biomass density models. Plot ba can be a good predictor of tree

aboveground plot biomass density, as demonstrated by the high R2m and low CV of our plot

biomass density models. These models can be useful for large-scale biomass estimates, since

individual-tree data sets are rare in the literature. Ribeiro et al. [20] also developed a model to

estimate biomass density from plot ba. However, unlike our models, which were based on a
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large sample (893 plots from 77 sites), their model was based on a small sample (10 plots from

a single site), which may limit its applicability.

Models 13 and 14 had the same explanatory variable (plot ba), but the response variables

(plot biomass) were calculated differently. In model 13, plot biomass was estimated from

model 11 (based on v), which had the strongest fit. In model 14, plot biomass was estimated

from model 10 (based on ba). The better performance of model 14 can be explained by the fact

that it did not account for the height variability of the data.

Tree aboveground biomass density variation of cerrado sensu stricto and

environmental influences

Tree AGB density variation in cerrado ss was high between ecoregions (8.8 to 42.2 tons ha-1),

between sites in the same ecoregion (4.8 to 39.5 tons ha-1), and within sites (24.3 to 69.9 tons

ha-1). This variation reflects the local and regional environmental heterogeneity in Cerrado.

Within-site variation may be due to local physiographic heterogeneity (e.g. drainage, topogra-

phy, soils), as well as local differences in disturbance regimes, including fire and harvest. High

local variation imposes a significant challenge for large-scale biomass estimates that do not

consider disturbance regimes and vegetation dynamics. These limitations could be overcome

by regular airborne or satellite monitoring and understanding of ecological processes. There-

fore, large-scale estimates should integrate all of these approaches.

When examined separately with linear regression, ecoregion, sand content, and clay con-

tent explained 42%, 11.5%, and 7.4% of AGB variation, respectively. Higher sand content in

soil is associated with lower water retention. Because seasonal drought is a limiting factor for

vegetation growth in the Cerrado, one would expect that higher sand content would be associ-

ated with lower AGB. However, the correlation coefficient for sand was positive. A possible

reason for this finding is that many of the sites with high sand content are closer to the Ama-

zon, where higher annual precipitation and less drought may increase AGB density. In addi-

tion, cerrado ss trees often have very deep roots that can access groundwater tables even

during the drought season [82]. Therefore, soil water retention would have a stronger effect on

plants with shorter root systems.

Ecoregion. The concept of ecoregion has long been used in biodiversity conservation

[9,57,58], and more recently to estimate primary productivity and carbon balance [83] and to

Table 7. Comparison of tree aboveground biomass models, based on destructive sampling data of the present

study.

Model σ (g) CV (%) Reference

Model 11: y(g) = [409.047 � (v)0.976] � 1.17 3,728 73.6 Present study

y(kg) = 0.0673 � (ρd2h)0.976 3,819 75.4 [4]

Model 12: y(g) = [0.979 � (ρv)0.963] � 1.17 3,889 76.8 Present study

y(g) = 28.77 � (d2h) 3,921 77.4 [17]

y(kg) = −0.49129 + 0.02912 � (d2h) 4,002 79.0 [18]

y(t) = e−10234+2.459�ln(d)+0.4111�ln(h) 7,222 142.6 [19]

y(g) = e0.6997�ln(v)+2.587 9,289 183.4 [16]

y(kg) = e−3.352+2.985�ln(d)+1.186�ln(ρ) � 1.071 10,533 207.9 [20]

σ = standard error, CV = coefficient of variation, y = tree aboveground biomass, d = diameter (cm) (measured at 1.30

m for models in Chave et al. [4], Ribeiro et al. [20], and Scolforo et al. [19], and measured at 30 cm in Rezende et al.

[18], Delitti et al. [17], and in our study), h = height (m), v = volume (dm3), ρ = wood density (g cm-3 for models in

Chave et al. [4] and Ribeiro et al. [20], and g dm3 for model 12 in our study).

https://doi.org/10.1371/journal.pone.0196742.t007
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develop height-diameter allometric models [84–88] and biomass models [72]. Despite high

variation within sites and between nearby sites in our study, ecoregion explained 42% of AGB

density variation. This shows its strong potential as a parameter for classifying regional bio-

mass variation in the Cerrado. Furthermore, including ecoregion as a random effect may

improve models based on data sets collected over large spatial scales. Ecoregion is a valuable

categorical variable because it integrates numerous ecological and climatic factors that likely

affect AGB [72].

This study represents the largest effort to date to organize and analyze decades of biomass

surveys in the Brazilian Cerrado. The region is losing natural vegetation cover at an accelerated

pace, with critical consequences for climate change, biodiversity conservation, and ecosystem

functions (e.g. changes in the hydrological cycle). Our findings highlight the relevance of data

integration, different monitoring approaches, and an understanding of the processes and pat-

terns that determine biomass variations at different scales.
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vegetação brasileira. Rio de Janeiro: IBGE; 1991

13. Oliveira Filho AT, Ratter JA. Vegetation physiognomies and woody flora of the Cerrado biome. In: Oli-

veira PS, Marquis RJ, editors. The Cerrados of Brazil: ecology and natural history of a Neotropical

savanna. New York: Columbia University Press; 2002. pp 91–120

14. Ottmar RD, Vihnanek RE, Miranda HS, Sato MN, Andrade SMA. Séries de estereo-fotografias para

quantificar a biomassa da vegetação do Cerrado do Brasil Central, vol. I. USDA/USAID/UnB. Gen.

Tech. Rep. PNW-GTR-519. Portland: US Department of Agriculture, Forest Service; 2001

15. Ribeiro JF, Walter BMT. 1998. Fitofisionomias do bioma Cerrado. In: Sano S, Almeida S, editors. Cer-

rado: ambiente e flora. Planaltina: Embrapa-CPAC; 1998. pp.89–166

16. Abdala GC, Caldas LS, Haridasan M, Eiten G. Above and belowground organic matter and root: shoot

ratio in a cerrado in Central Brazil. Braz J Ecol. 1998; 2(1): 11–23.

17. Delitti WBC, Meguro M, Pausas JG. Biomass and mineralmass estimates in a cerrado ecosystem. Rev

Bras Bot. 2006; 29:531–540.

18. Rezende VA, Vale AT, Sanquetta CR, Filho AF, Felfili JM. 2006. Comparação de modelos matemáticos
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